麦克斯韦速率分布律推导
1. 原始分布函数
$$
f(v) = 4\pi \left( \frac{m_0}{2\pi kT} \right)^{3/2} v^2 \exp\left( -\frac{m_0 v^2}{2kT} \right)
$$
2. 最概然速率定义
$$
v_p = \sqrt{\frac{2kT}{m_0}} \quad \Rightarrow \quad \frac{m_0}{2kT} = \frac{1}{v_p^2}
$$
3. 系数化简
- 系数部分转换:
$$
\left( \frac{m_0}{2\pi kT} \right)^{3/2} = \frac{1}{\pi^{3/2} v_p^3}
$$ - 合并系数:
$$
4\pi \cdot \frac{1}{\pi^{3/2} v_p^3} = \frac{4}{\sqrt{\pi} v_p^3}
$$
4. 指数部分转换
$$
\exp\left( -\frac{m_0 v^2}{2kT} \right) = \exp\left( -\frac{v^2}{v_p^2} \right)
$$
5. 最终分布律
$$
\frac{dN}{N} = \frac{4}{\sqrt{\pi}} \left( \frac{v^2}{v_p^3} \right) \exp\left( -\frac{v^2}{v_p^2} \right) dv
$$
6. 无量纲形式(W = v/v_p)
$$
\frac{\Delta N}{N} = \frac{4 W^2 e^{-W^2}}{\sqrt{\pi}} \Delta W \quad (W \equiv \frac{v}{v_p})
$$